skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Curtis, Ryan W"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT A tetrameric coiled‐coil peptide,TetNL, is used herein as a building block for hierarchical assembly into higher order structures. Assembly within phosphate buffer (pH 7.4) led to the rapid formation of micron‐sized fibers and cuboid structures, a process that could be shifted toward cuboid formation with agitation during the assembly process. Investigation of the packing of the cuboid assemblies by TEM demonstrated a regular banding pattern (4.6 nm) within the structures that was perpendicular to the length of the cuboids, a value that supports an end‐to end organization of the tetrameric coiled coils along the blocks. SWAXS analysis supports that the internal packing of the tetrameric coiled coil building blocks is a close‐packed hexagonal structure. These data represent an interesting comparison with a trimeric coiled coil peptide,TriNL, that forms hollow nanotubes with the same internal hexagonal packing. ModifiedTriNLhas been used to generate numerous unique morphologies, and the data presented herein provide a distinct tetrameric building block that can also be exploited in this manner. 
    more » « less
  2. Here, the hierarchical assembly of a collagen mimetic peptide (CMP) displaying four bipyridine moieties is described. The CMP was capable of forming triple helices followed by self-assembly into disks and domes. Treatment of these disks and domes with metal ions such as Fe(II), Cu(II), Zn(II), Co(II), and Ru(III) triggered the formation of microcages, and micron-sized cup-like structures. Mechanistic studies suggest that the formation of the microcages proceeds from the disks and domes in a metal-dependent fashion. Fluorescently-labeled dextrans were encapsulated within the cages and displayed a time-dependent release using thermal conditions. 
    more » « less